what tcp provide and UDP dosen’t?

TCP uses a combination of four algorithms to provide congestion control, slow start, congestion avoidance, fast retransmit and fast recovery

These algorithms all use packet loss as an indication of congestion, and all alter the number of packets TCP will send before waiting for acknowledgments of those packets. These alterations affect the bandwidth available and also change delays seen on a link, providing another source of jitter.

Figure 1: Simplified IP protocol stack

Combined, TCP raises jitter to an unacceptable level rendering TCP unusable for real-time services. Voice communication has the advantage of not requiring a completely reliable transport level. The loss of a packet or bit error will often only introduce a click or a minor break into the output.

For these reasons most VoIP applications use UDP for the voice data transmission. UDP is a thin layer on top of IP that provides a way to distinguish among multiple programs running on a single machine. UDP also inherits all of the properties of IP that TCP attempts to hide. UDP is therefore also a packet based, connectionless, best-effort service. It is up to the application to split data into packets, and provide any necessary error checking that is required.

Because of this, UDP allows the fastest and most simple way of transmitting data to the receiver. There is no interference in the stream of data that can be possibly avoided. This provides the way for an application to get as close to meeting real-time constraints as possible.

UDP however provides no congestion control systems. A congested link that is only running TCP will be approximately fair to all users. When UDP data is introduced into this link, there is no requirement for the UDP data rates to back off, forcing the remaining TCP connections to back off even further. This can be though of as UDP data not being a “good citizen”. The aim of this project is to characterise the quantity of this drop off in TCP performance.